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INTRODUCTION

The crystal structures of a series of copper(II) complexes with
the ligand 2,2'bipyridylamine were determined by single crystal X-ray
diffraction techniques.

Iin any complex containing the ligand 2,2'bipyridylamine 1igand-
lTigand repulsions are important and in fact essentially eliminate the
possibility of a trans planar configquration without severe ligand
distortion. In this way the ligand is similar to 2,2'bipyridy],]’2
but the amine ligand is more flexible and can adapt to a greater
variety of geometries.

Although many copper (II) complexes have been formed containing
this !igand] few have been characterized structurally and in some
cases even the stoichiometry is in doubt. There is also considerable
current interest in the electronic properties of copper (IT) and their
correlation with structure.3 With this in mind a series of three
complexes of this type were studied and were shown to display four
different coordination geometrie§ depending on the anion present. The
geometries found were: a distorted tetrahedron, a trigonal bipyramid,
a square pyramid and a distorted octahedron. The first configuration
occurs in CuLz(CIOL*)2 where L = 2,2'bipyridylamine, the second in
(CULZI)ZIC]OM’ and the third and fourth, respectively, in the co-
crystallized complexes CuL,NCSCI0, and CuLz(NCS)Z-

In order to provide structural data for the free ligand, the
crystal structure of the low melting polymorph of 2,2'bipyridylamine

was determined. In this crystal structure hydrogen bonds between



molecules result in discrete dimeric units possessing two-fold
crystallographic symmetry.

In addition to the crystal structure work performed, a method for
crystal structure determination involving linear programming is

outlined in an Appendix.



THE STRUCTURE GF 815(2,2'BIPYRIDYLAMINE)

COPPER (TT) PERCHLORATE

introduction

The crystal structure determination of bis(2,2'bipyridylamine)
copper (11) perchlorateh was undertaken because of the dearth of struc-
tural information available on coordination complexes with the
2,2'bipyridylamine ligand] and due to the conflicting evidence re-
garding the coordination geometry of the copper (11) perchlorate
complex.5 While a previous crystal structure determination involving
this ligand has been reported,6 the amine protons of the ligand had
been removed in the formation of a neutral palladium complex leaving
the ligand with a ;Et charge in the square planar complex.7 - The
present study is the first report of an X-ray single crystal structure
determination of a complex with the neutral ligand.

Previous X-ray powder diffraction studies show that CuLz(Clol‘)2
L= 2,2'bipyridylaﬁine) is isomorphous with ZnL?_(CIOQ)2 in which
zinc is presumably in a tetrahedral environment.s Infrared and
electronic spectral studies have indicated, however, that while the
perchlorate anion is not coordinated, there is no evidence for gross
departure from a planar geometry about the copper.h’5 0f additional
interest is a comparison between this structure and that of the palladium
complex, revealing two, quite different, means of relieving the

steric strain in trans-coordinated ligands of this type.



Experimental

Bis(2,2'bipyridylamine) copper (IT) perchlorate was prepared as
follows: 0.013 moles of Cu(ClOu)z-BHZO was dissolved in 12.5 ml of
absoiute ethanol. To this was added a solution of 0.027 moles 2,2'-
bipyridylamine dissolved in 175 ml of acetone. Deep blue microcrystals
precipated immediately. The copper complex was then recrystallized
using hot water. On slow cooling very small blue plate-like crystals
and larger rod-like crystals were formed. Although the latter crystals
did not have well formed faces, they were found to be single crystals
and were used for this investigation. Weissenberg photographs taken
of the plate~like crystals indicate that the unit cells of the two
types of crystals are identical. Preliminary Weissenberg photographs
exhibited 2/m Laue symmetry, indicating a monoclinic space group.

Crystal Data.==C,qH,gNgCuCi,0g, M = 604.9, monoclinic,

a=9.35+0.02, b =12.88+0.01, ¢ = 19.69+ 0.02 §, B = 102.8+0.3°,
v=2313 %, D = 1.74 g/cc, D, = 1.74 g/cc, Z =4, E(000) = 1288 e,
w=12.8 cm—], for Mo Kx radiation. Space group Cc (Cg) or C2/c (Cgh)
from systematic absences hk{ for h+k=2n+l, and h0{ for f=2n+l.

The unit cell parameters were determined from the 2g values of
high order reflections whose centers were determined from left-right,
top-bottom beam splitting on a previously aligned Hilger-Watts four
circle diffractometer. (Mo K radiation, ) = .7107 &)

For data collection, a crystal having approximate dimensions
0.2 x 0.12 x 0.12 mm was mounted with the elongated direction (b axis)

along the spindle axis of the goniometer head. Data were collected



at room temperature utilizing an automated Hilger-Watts four circle
diffractometer equipped with a scintillation counter and using Zr-
filtered Mo KX radiation. Within a 2g sphere of 40°, all data in

each of two octants were recorded using a g~2¢ scan technique. The
steps were 0.01° in g and the counting time per step was 0.4096 sec.
The symmetric scan range consisted of fifty steps plus two steps per
degree 2g. Stationary crystal, stationary counter background counts of
one half the total scan time were made at the beginning and end of

each scan.

As a general check on crystal and electronic stability, the
intensities of three large reflections (222, 006, and 131) were re-
measured ;eriodically during the data collection period. No significant
decrease in intensities was detected during the data collection period
for these intensities and therefore no correction was made for
crystal decomposition.

The intensity data were corrected for Lorentz-polarization ef-
fects, but no correction was made for absorption since u = 12.80 cm-],
wi th associated maximum and minimum transmission factors of 0.86 and
0.77.

Equivalent reflections were averaged to yield 2078 independent

intensities. The estimated error in the intensity was calculated

from

[O'(I)] C +C + @Tc) + (‘B‘B



where C_ and £B are the total count and background count, respectively.

T
5T and 58 are the fractional random errors in ET and EB’ respectively,
and were both assigned values of .05. The estimated standard deviation
in the structure factor was calculated from g(I) by the finite dif-

8

ference method. 0f all the independent reflections measured, 1167

had T = 30(I) and these were considered observed.

Solution and Refinement of the Structure

A Patterson map9 was computed and analysis indicated that the
probable space group was CZ/C with the copper atom occupying a posi-
tion of two=fold crystallographic symmetry. The centrosymmetric space
group was also indicated by a statistical tes'c]0 and later confirmed
by successful refinement in this space group. Initial positions for
the copper and chlorine atoms were determined from this Patterson map
and the remaining atoms were found from successive electron density
map calculations. The atoms were refined first isotropically and then,
since evidence of anisotropic motion was evident from a difference
Fourier map, anisotropically to a final conventional discrepancy factor
of R = 9.4% and a weighted discrepancy factor
R, = [Zm(|Fol-'Fc|)2/2m|Fd[2)% = 9.4%. Scattering factors used were
those of Hansen et gl;]] with copper and chlorine atoms modified for
the real and imaginary parts of anomolous dispersion.]2 During the
latter stages of refinement, 31 reflections where |Fo! < %]Fc| were
removed and the weights were checked by an ;:5 plot against |?;[,

and subsequently, slightly modified to give a more constant value of



———

mﬁz. A difference electron density map at this stage indicated that
all nonhydrogen atom posftfons had been accounted for. It was
impossible to determine hydrogen positions from the map; however, the
positions of the aromatic hydrogen positions were calculated assuming
a benzoid geometry and treated as parameters in the final least squares
refinement. A carbon hydrogen distance of 1.05 i was assumed and the
atoms were assigned an isotropic temperature factor of 6.0 ﬁ?.
The final standard deviation for an observation of unit weight
[Zhﬂz/(NO-NV)]%E where A = |F°|-]Fcl, NO is the number of observations
(1135) and NV is the number of variables (168), was 0.97 electrons.
During the final cycle of least squares the largest shift in any
parameter was less than 0.2 times its standard deviation. The final
values of positional and thermal parameters are listed in Tables I and II,
along with their standard deviations as derived from the inverse matrix
of the final least squares cycie.]3 In Figure 1 are listed the magni-
tudes of the observed and calcul ated structure factors in electrons
x 10. The computer drawings used throughout the text were produced by
OrR TEP.IA Distances and angles with their standard derivations were
calculated using the variance-covariance matrix from the final least

15

squares cycle and OR FFE program.

Description of the Structure
The structure of bis(2,2'bipyridylamine) copper(IT) perchlorate
consists of discrete monomers of the complex in which each copper

atom is bound in a bidentate fashion to two ligand groups. There



Table T. Final atomic coordinates® with estimated standard deviationsb

in parenthesis

Atom x y z
Cu 0.0°¢ 0.1943 (1) 0.25"

N(T) -0.1738(11) 0. 1452 (8) 0. 1824 (5)
N(2) -0.0742(11) 0.1800(9) 0.0827(5)
NG3) 0.9972(12) 0.2512(7) 0.1786(5)
c(1) -0.2857(13) 0.1068(12) 0.2075(7)
c(2) -0.4096(15) 0.0711(12) 0.1659(7)
cB3) -0.4330(15) 0.0671(11) 0.0900(7)
c(4) -0.3098(15) 0.108% (10) 0. 0668 (6)
c(5) -0.1095(14) 0.1436(10) 0.1109(6)
c(6) 0. 0461 (12) 0.2343 (10) 0.1082(6)
c(7) 0.1224 (14) 0.2780(9) 0. 0608 (6)
c(8) 0.2461(16) 0.3337(11) 0.0857(7)
c(9) 0.3420(12) 0.3520(12) 0.1611(7)
c(10) 0.2225(15) 0.3049(11) 0.2404(7)
¢! -0.3196(3) 0.4439(3) 0.1075(2)
o(i) -0.3996(12) 0.3643 (10) 0. 0660(5)
0(2) -0.3955(12) 0.4797(8) 0.1573 (5)

qpositional parameters are in fractional unit cell coordinates.

bEstimated standard deviations are given in parenthesis for the
least significant figures.

Asterisk (k) denotes an atomic parameter fixed by symmetry.



Table T (continued)

Atom X Y z
0(3) -0.2961(14) 0.5263 (8) 0. 0650(6)
o(4) -0.1834(12) 0.4027(9) 0. 1422(6)
H(1)d -0.275 0.105 0.266
H(2) -0.499 0. 043 0.189
H(3) -0.521 0. 040 0. 060
H&) 0.316 0.111 0. 007
H(7) 0. 082 0.267 0. 005
H(8) 0.306 0.367 0. 050
H(9) 0.398 0.394 0.179
H(10) 0.263 0.314 0.264

dPositions calculated for aromatic hydrogen atoms. The number
of the hydrogen atom corresponds to the carbon atom to which it is
bonded. All hydrogen atoms have been assigned an isotropic temperature
factor of 6.0 jA.



10

Table II. Anistropic temperaturea factors with standard deviations
in parentheses

Atom By, Pa2 P33 Br2 P13 P23

Cu 706(30)  604(19)  136(6) 00” 135(12) 00"

N(T) 839(156)  412(73)  167(30)  -56(95)  132(57)  -10(k2)
N(2) 966(167)  763(101) 215(34) -358(114) 289(64)  103(50)
NG3) 974 (170) 518(83) 191 (32) 11(106) 224(61) L6 (L5)
c(1) 637(193) 571(109) 334(51) -213(127) 226(83) -10(6k4)
c(2) 1061(230)  796(132) 305(51)  -33(160) 280(92) 43 (73)
C(3) 1016(207)  728(123) 252(45) -222(146) 196(80)  -47(65)
c(4)  1033(211)  kio(1o4) 243 (43) -117(131)  -31(8) -111(57)
c(5) 1066(209)  353(92)  220(41)  -66(120) 188(77) 32(56)
c() 399(143)  485(95)  176(37) 69(111)  68(59)  -14(52)
c(7) 800(177) 376(93) 221(39) ~78(116)  200(71) 52(52)
c(®)  1174(231)  467(112) 319(50) L9(136) 303 (87) 3(61)
c(9) 851 (1%k)  730(117) 259(k5) -140(135) 256(79) 11 (64)
c(10) 950(200) 523(103) 338(50) -299(139) 236(86) 134 (69)
cl 984 (51) 527(27)  208(10)  -97(32) 210(20) 3(14)
o(1)  1942(199) 1260(113) 328(38) -763(330) 234(70) -331(58)
0(2) 2056 (199) 831(92) Lo2 (41) 3(121) 567(79) -49(53)
03)  2h46(2hk0)  785(98) 633 (Sk)  349(130)  7hL(99)  369(63)
o(k) 1176(178)  893(100) 570(51)  245(120) 109(76)  176(60)

2

2+ ZBlzhk-i— 2513h£+ 2623'(‘(’)] .

a . . .
B's x ]05; the form of the anisotropic temperature factor is

2 2
exp[- (By1h” +Byok +B33



Figure 1.. Observed and calculated structure factors (x 10) for
bis(2,2'bipyridylamine) copper(i!) perchlorate
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13

is no indication of coordination of the perchlorate group, the
closest oxygen copper distance being 3.6 }.

The copper atom lies on the grystallographic two-fold axis and
therefore the exact point group symmetry of the cation is C2- However,
the geometry can best be described as a distorted tetrahedron
(Figure 2) with point group symmetry being nearly Doy if only the atoms
bound to the copper are considered. The significant bond distances
and angles are given in Table TII, with significant nonbonded distances
in Table IV. Figure &4 is a stereoscopic view of the unit cell.

The two Independent copper-nitrogen distances are somewhat dif-
ferent, 1.94(1) vs 1.99(1) . This difference probably results from
steric effects evident in other parts of the molecule and has been
observed in a similar 2,2'bipyridyl complex of copper(II).ls The
copper-amine nitrogen distance is 3.19 A, indicating no appreciable
interaction between these atoms. The bond distances within the
2,2'bipyridylamine ligand are similar to those reported in the palladium
complex involving this ligand. The closest approach between carboﬁ
atoms of different ligands is 3.06 i between C(1) and C(10) (Table IV).
The distance between the associated hydrogen atoms is 2.76 A, indi-
cating that the geometry of the cation has reduced interligand crowding.
The mean carbon-carbon and carbon-nitrogen bond distances in the
pyridine groups of the ligand are 1.40 and 1.35 3, respectively. These

17

averages agree quite well with those reported for pyridine. There

is distortion about the bridging nitrogen as evidenced by the



Figure 2. A view displaying the pseudotrahedral geometry of the bis(2,2'bipyridylamine)
copper(11) moiety
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Table IIT- Bond lengths (angstroms) and bond angles (degrees) with
estimated standard deviations in parentheses

N(1)-c(1)
c(i)-c(2)
c(2)-c(3)
c(3)-c)
C(&)-c(5)
c(5)-N(1)
c(6)-c(7)
c(7)-c(8)
C(8)-c(9)
c(9)-c(10)
C(10)-N(3)
C(6)-N(3)

N(1)-c{1)=-C(2)
c(1)-c(2)-c@3)
C(2)-c(3)-c(&)
C(3)-c(4)-c(5)
C()-c(5)-N(1)
C(5)-N(1)=c(1)
c(6)-c(7)-c(8)

1.35(1)
1.33(2)
1.45(2)
1.44(2)
1.32(2)
1.37(2)
1.41(2)
1.35(2)
1.47(2)
1.41(2)
1.33(1)
1.37(2)

123(1)
122 (1)
112(1)
123 (1)
123(1)
117(1)
120(1)

®primed atom numbers refer to atoms primed in Figure 3.

Distances

Angles

N(2)-C(5)
N(2)=C(6)

Cu=N(1)
Cu-N(3)

c1-0(1)
c1-0(2)
c1-0(3)
c1-0(4)

c(5)-N(2)-C(6)
N(3)=Cu=N(T)
N(1)-Cu-N(1)®
N(3)-Cu-N(3)'
0(1)-c1-0(2)
0(1)-c1-0(3)
0(1)-ci-o(4)

1.51(1)
1.32(1)

1.94(1)
1.99(1)

1.41(1)
1.41(1)
1.39(1)
1.40(1)

134(1)
95.6(%)
142.0(6)
137.3(6)
110(1)
110(1)
108(1)
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Table ITI (continued)

Angles
c(7)-c(8)-c(9) 123 (1) 0(2)-c1-0(3)
C(8)-c(9)-c(10) 113 (1) 0(2)-c1-0(&)
C(9)-c(10)-N(3) 118(1) 0(3)-Ccl-0(k)

N(3)-C(8)-c(9) 118(1)
C(10)-N(3)-C(6) 122(1)

110(1)
109(1)
109(1)
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Table IV. Nonbonded interatomic distances (angstroms)

N(Z) ... 0(1) 3.81(2) c@) ... c(10h)®
N(2) -.. 0(2) 5.29(2) H(1) ... H(10T)
NE@2) -.. 0(3) 4.89(2) Cu ... 0(1)
N(2) -.. O(&) 3.34(2) Cu -.. 0(2)
caol) ... catll) 3.88(2) Cu ... 0(3)
cel) ... naIIT)  3.82(2) Cu ... O(L)
NGD) ... cIl)  n.a2(2) Cu ... Cl

c6l) ... ¢y  4.32(2) Cu ... Cu

c@l) ... ¢TIy n.07(2) Cu ... N(2)

3.06(1)
2.76

5.09(1)
5.24(1)
5.90(1)
3.61(1)
4.8k

7.95(1)
3.19(1)

®The following symmetry related positions are referred to:
I~ x:Y:%"Z; IT - %'PX,%"*‘Y,Z; IIT - %'X,%*’Y,%'Z-



Figure 3. Projection of the bis(2,2'bipyridylamine) copper(]_’]_’)2+
moiety on the ac plane, with some relevant distances
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signifi;ant difference between the two carbon-nitrogen distances,
1.41 and 1.32 3.

Least squares plane calculations (Table V) indicate that the
individual pyridine rings are essentially planar but the ligand as a
whole is not with a 9.6° angle between the normals to the least squares
planes of the pyridine rings.

The dihedral angle between the planes defined by N(1), Cu, N(3),
and N(1)', Cu, N(3)' is 55.6°, while the dihedral angle between planes
defined by N(1), Cu, N(1)', and N(3), Cu, N(3)' is 92.6°. The first
dihedral angle is somewhat closer to the 90° angle expected for the
tetrahedral geometry than the 0° angle expected for the square planar
configuration. The chelate ring formed by Cu, N(1), C(5), N(2), C(6),
N(3) is in a boat configuration with Cu and N(2) below the level of the
plane defined by the other four atoms (Table V).

There appears to be no significant hydrogen bonding in the
structure, the closest approach between likely atoms being 3.3 A be-
tween N(2) and 0(4) of the perchlorate group. The location of the
perchlorate group relative to the amine nitrogen (Figurel4) would
lead one to discount the importance of hydrogen bonding.

The cations of the complex are stacked in the y direction of the
unit cell with the perchlorate sandwiched between alternate layers of
the pyridyl rings (Figure4 ). The closest approach between two pyridyl
rings of di fferent cations is 3.82 A (Table IV). The closest approach

between two copper atoms is 7.95 A-
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Table V. Least squares planesa

Plane £ m n k
i -0.468 0.880 -0.079 -2.53
2 -0.409 0.911 -0. 055 -2.52
3 -0.548 0.835 -0.500 -2.46
Deviations from Plane (angstroms)
Atom Plane | Plane 2 Plane 3
Cu -0.1637?
N(T) 0.00 0.00
c(1) 0. 00
c(2) 0.02
c@) 0. 004
C(&) -0. 003
c(5) 0.01 -0.012
N(2) -0.105"
c(é) -0.006
c(7) 0.001
c(8) 0.02
c(9) 0.005
c(10) -0.007
NG3) 0.00 0.008

®The planes ¢X' +mY' + nZ' +k = 0 are referred to orthogonal axes.
The transformation fvom fractional cell coordinates (x,y,2) is
X' = ax+cz(cosB), Y' = yb, Z' = zV/ab.

bStarred values correspond to atoms not used in the least squares
plane calculation.
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Discussion

The geometry about the copper in this complex can best be described
as a tetrahedron which has been compressed along the crystallographic
two-fold axis to give the observed geometry; this geometry probably
results from steric interaction between the ligands.

The original reflectance spectra was interpreted as resulting
from a square planar or tetragonally distorted geometry. In a recent
analysis of the spectra, Lancaster proposed that the reflectance spectra
would be consistent with a;nénplanar geometry if the high frequency
peak at 18.11 KK were not, in fact, a d — d transition, but of some
other origin such as charge transfer.S Dudley g;_gl;]s have reported
the single crystal polarized spectra, however, and conclude that the
peak at 18.11 KK is a d «— d transition and, from the electronic
properties, propose that the observed steriochemistry results from a
tetrahedrally distorted square planar geometry.

It is of interest to compare the structure of the bipyridylamine
copper complex with that of the bipyridylaminato paliadium complex.
Both crystallize in the same space group, but the palladium occupies
al symmetry site, while the copper atom is on a two-fold site. The
mechanism invoked to reduce the steric hindrance between the two
ligands in each complex is quite different. In the palladium complex
the ligand bends about the bridging nitrogen such that the dihedral
angle between the pyridine rings is 38.2°, while the coordination
geometry is strictly square planar. In the copper complex, however,

a more tetrahedral geometry is assumed, allowing the ligand as a whole
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to be nearly planar with only a 9.8° dihedral angle between the
pyridine rings. The pyridine rings are somewhat less distorted from
planarity in the copper relative to the palladium moiety, maximum
deviations being -02 in the former compared to .04 X in the latter.
There is, however, more variation in the carbon-bridging nitrogen dis-
tances in the copper complexes relative to those in the palladium
moiety: 1.41 and 1.32 vs 1.37 and 1.33 &, respectively, and the C-N-C
angle in the copper salt (134°) shows greater distortion from the ex-

pected value than that found in the more aromatic palladium compound

(123°).



Figure 4. Stereoscopic view of the packing in the unit cell of
bis(2,2'bipyridylamine) copper (IT) perchlorate. The origin
is at the bottom left hand corner of the enclosure, and z
lies across the page, x upward, and y out of the page
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THE STRUCTURE OF DI (10DOBIS (2,2 BIPYRIDYLAMINE)

COPPER (7)) 10DIDE PERCHLORATE

Introduction

The crystal and molecular structure of di (iodobis(2,2'bipyridylamine)
copper (II)) iodide perchlorate was undertaken to provide additional
structural data on the coordination of 2,2'bipyridylamine with
copper (II) in the presence of various anions. The compound
(CULZI)ZICIOA was prepared by the method reported by McWhinnieh for
CuLZIC104- A recent study of the visible, infrared and electron spin
resonance spectra of the latter compound indicated a five coordinate

copper (II) species and a square pyramidal geometry was postulated.

Experimental

The preparation given by McWhinnie for CULZIC|04 was Followed;q
although the reaction appeared to proceed as had been reported and
small dark green crystals similar to those reported by McWhinnie were
obtained, analysis, later confirmed by the single crystal X-ray inves-
tigation, indicated a greater percentage of iodine (28.5% compared
to 20%) than expected for the simple stoichiometry CuLzICIOA- The
crystals, however, displayed a reflectance spectra similar to that
reported by McWhinnie.
Crystal Data.--CuON]2H36Cu213C104, M = 1292 g/m, monoclinic,
19.21+.01, b = 13.47+.01, ¢ = 19.50+.05 §, B = 11.88+.15°,

4687 12, D_

o
[l

<<
L}

1.85 g/cc, 2 =4, D_= 1.8 g/cc, F(000) = 2504 e,
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space group Pz]/c’ (Cgh) from systematic absences hOg, for g = 2n+1
and 0k0 for k = 2n+1, Mo - K, X=radiation, ) = .7107 &,
u(Mo-K ) = 29.57 cm .

The unit cell parameters and their standard deviations were
determined by a least squares fit to twelve independent reflection
angles whose centers were determined by left-right top-bottom beam
splitting on a previously aligned Hilger and Watts four-circle diffrac-
tometer.]9 Any error in the instrumental zero was eliminated by
centering the reflection at both +2g and -2g. For data collection a
crystal having approximate dimensions 0.25 x 0.25 x 0.15 mm was
mounted with the b axis aligned along the spindle axis of the
goniometer.

Data were collected at room temperature utilizing a Hilger and
Watts four~-circle diffractometer equipped with scintillation counter
and using Zr-filtered Moﬁz radiation. Within a 2g sphere of 40°, all
data in the hks and EE& octants were collected using a stationary
counter-stationary crystal technique. Intensities were measured by
counting at the peak center g(hks)for ten seconds and subtracting two
five-second background counts at g(hks) + [0.25 + .01 x g(hks)]. A
total of 8477 reflections were measured in this manner. Also 100 re-
flections covering a range of sin g/) values were remeasured via the
step scan method (moving-crystal moving-counter) for later use in a
peakheight to stepscan conversion.20 The plot of the ratio of

/1

vs sin g/) of these reflections increased

I peakheight —

integrated
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smoothly from 0.95 at low values of sin g to 1.60 at large values and
no chi or phi dependencies were indicated.

As a general check on electronic and crystal stability, the
intensity of three large reflections (551, 600, 004) were checked
periodically during the data collection. No significant decrease in
the intensity of these reflections was observed. The intensities were
corrected for Lorentz-polarization effects, but no absorption correction
was deemed necessary.

Equivalent reflections were averaged to yield 8259 independent

intensities. The estimated error in each intensity was calculated

from

le@1” = o+ 5 * @t—ct)z * @bgb)z

where.g_t and‘g_b are the total and background counts, gt and K are
estimates for nonstatistical errors in gt and C, and both were assigned
values of .05. The estimated deviations in the structure factors were
calculated from the finite difference method.8 Of all the measured
independent reflections, 3921 had T = 3 o(T) and these were considered

observed and used for the structure determination.

Solution of the Structure
A sharpened Patterson map2] was computed and initial
positions of the two copper atoms and three iodine atoms were
determined. A structure factor calculation with these atoms and

the chlorine atom produced a conventional discrepancy



30

factor of 27.8%. The remaining atoms were located from successive
structure factor and electron density map calculations, except for
the perchlorate oxygen atoms which could not be located or refined
because of severe disorder. With all the atoms isotropic, the structure
refined at R = 12.5%. At this point a difference electron density map
indicated anisotropic motion, especially about the copper and iodine
atoms. Refinement with these heavy atoms anisotropic produced an R
factor of 9.16%. The perchlorate oxygen atoms were taken into account
by allowing both the occupation parameter and the isotropic temperature
factor of the chlorine to increase. All atoms, except the chlorine,
were now refine& with anisotropic temperature factors. The discrepancy
factor at this stage was 8.80%. A difference electron density map at
this stage showed no significant peaks other than some diffuse electron
density in the area of the perchlorate.

Hydrogen positions for the aromatic rings were calculated assuming
a benzoid structure with a C-H distance of 1.05 3. The hydrogen atoms
were assigned the isotropic temperature factor of the attached carbon.
A final structure factor calculation with these atoms present produced
a discrepancy factor R = z!|F°| - [Fcl!/z!Fol of 8.63% and a weighted
discrepancy factor Rw=[2w(|Fol-]Fc!)z/zw!FOIZ]% of 9.8%. The scattering
factors used are those of Hansen et gl;,]] with copper, iodine, and
chlorine modified for the real and imaginary parts of anomalous dis-
persion.]2 Due to the large number of variables, block diagonal
least squares was used throughout.22 in Figure 5 are listed the

magni tudes of the observed and calculated structure factors in



Figure 5. Observed and calculated structure factors (x 10)
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electrons x 10. The final positional parameters and anisotropic
thermal parameters for nonhydrogen atoms are given in Tables VI and
VIT respectively, and the calculated hydrogen positions are listed
in Table VITT.
Description of the Structure and Discussion

The crystal and molecular structure of di (iodobis (2,2'bipyridyl-
amine) copper (IT)) iodide perchlorate consists of two crystallo-
graphically-independent five~coordinate copper (ITT) moieties in the
asymmetric unit along with nonbonded iodide and perchlorate anions.
The two five=coordinate species are both slightly distorted trigonal

bipyramids with no structurally significant differences between them.

The geometry and chemical constitution of chromophore T is
shown in Figure 6 while Figure 7 is a view of the asymmetric unit
displaying the two cations, the iodide and the chloride ion of the
perchlorate group. Table TX lists all distances and angles about the
two copper atoms and the mean distances for chemically equivalent bonds
within the ligands. In the following discussion all structural data
quoted will be for chromophore T (containing Cu(l) and 1(1)), with
the equivalent data for chromophore IT in parenthesis where signif-
icant.

The equatorial atoms of each trigonal bipyramid consists of two
nitrogen atoms from different bidentate ligands and an iodine atom,
all of which lie within .01 § of the equatorial plane containing the

copper (TT) ion. The axial positions are occupied by the remaining
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Table VI. Final atomic coordinates with estimated standard deviations
in parentheses®

Atom X y z
(1) -3214(1) - 0794 (1) -h382(1)
I(2) .033(1) 4096 (1) .1820(1)
13) -.1767(1) .3858(1) LIk (1)
cu(l) .3855(1) .1652 (2) .3526(1)
Cu(2) .0540(1) L6094 (2) .1897(1)
c1(1) 5274 (2) L0373 (3) .1663 (2)
N(T) -3493 (9) .2958(11) -3739(9)
N(2) -4554(9) .3206(12) 4794 (9)
N(3) 4936 (9) L2246 (13) .L005(10)
N (%) -3595(9) -1923 (11) -2420(9)
N(5) .3180(10) .0285(11) .2089(9)
N(6) 4144 (9) .0300(12) .3312(9)
N(7) .1226(9) .5897(11) .1362(10)
N(8) .0250(10) .6185(15) .0183 (10)
N(9) -. 0083 (9) .7087(13) 1102 (10)
N(10) L1254 (11) . 7053 (14) .2642(10)
N(T1) .0870(10) L6324 (14) .3599(10)
N(12) ~-. 0143 (8) .6162(12) L2473 (8)
c(1) -2777(12) -3233(17) -3333(14)

a . . . . s
in this and succeeding tables, estimated standard deviations are
given for the least significant figures.



Table VI (continued)
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Atom x y z
c(2) -2403 (13) .3964(17) .3488(13)
c@3) L2763 (14) L4471 (18) L4151 (13)
c(4) L3485 (14) .L4181(18) .4589(12)
c(5) -3847(11) -3427(15) -4358(11)
c(6) .5116(11) .2867(15) 4594 (12)
c(7) . 5854 (12) -3165(17) -4948(13)
c(8) .6406(13) .2873 (18) .4691 (16)
c(9) -6233 (13) .2246(19) -%093 (16}
c(10) - 5463 (12) -1939(18) -3769(1k)
cQn -3696 (12) -2852(17) -2197(13)
c(12) .3477(13) .3133 (16) . 1426 (13)
c(13) .3131(15) .2424(18) .0938(12)
c(i4) .2990(13) .1514(16) . 1144 (10)
c(15) .3237(10) .1269(14) .1889(11)
c(ié) -3763 (12) .01639(13) -2705(12)
cQ7) .3882(14) .1188(16) .2630(14)
c(18) L4421 (14) .1669(17) .3206(15)
c(19) .4870(15) .1172(16) .3828(14)
c(20) .4720(14) .0212(18) .3869(15)
c(21) .1931(12) .5670 (14) .1738(16)
c(22) -2368(13) .5352(19) -1430(14)



Table VI (continued)
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Atom X y z
c(23) L2131 (14) .5227(19) . 0661(16)
c(24) .1398(15) .5512(18) .0273 (13)
c(25) . 0942 (12) .5845(15) .0582(11)
€(26) -.0173 (13) 6941 (15) . 0360(12)
c(27) -. 0655 (15) - 7493 (21) -0207(14)
c(28) -.1010(19) .8293(19) .0002(19)
€(29) -.0937(1%) -8450(19) -0700(17)
c(30) - 0449 (15) . 7856(23) -1229(14)
c(31) .1623 (1k4) .7739(22) .2L466(18)
c(32) 2113 (1k4) .8369(21) L2944 (16)
c(33) . 2248 (18) .8261(17) .3659(15)
c(34) .1819(1k) . 7639(20) -3897(14)
c(35) -1320(11) -6990(19) -3334(15)
c(36) L0146 (11) .6085(17) .3211(12)
c(37) -.0287(1%) -5788(21) .3576(15)
c(38) -.1023 (14) .5665(23) .3240(15)
c(39) -.1326(12) .5790(19) L2431 (15)
c(40) -.0852(12) .6008(16) .2118(12)
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Table VII. Anisotropic thermal parametersa

Atom 104311 104522 104533 10“523 104513 10“512
(1) 59(1) 64 (1) Lo(1) =23 (1) 61(12) -40(2)
1(2) 69(1) 55(1) 30(1) -2(1) 38(1) -21(2)
13) 64 (1) 95(1) 37(1) 11(2) 38(1) -10(2)
Cu(1)  34(1) 51(2) 25(1) 0(2) 22(2) 2(2)
cu(2)  37(1) 61(2) 2L (1) ~2(2) 28(2) -9(2)
cl 6.57(13)° o 0 0 0 0
N(T) 35(8) 54(11) 28(7) -28(14) 9(12) -18(14)
N(2) 32(7) 53 (12) 31(7) 3(k)  24(12) 13 (14)
NG3) 35(8) 70(1k) 38(8) 19(16)  30(I13) 0(16)
N(4) 35(7) 37(10) 36(7) -7(13) 50(12) -37(13)
N(5) 48(8) 33(11) 30(7) 20(13)  22(12) 6(15)
N(6) 40(8) 64 (13) 26 (7) 23(15)  22(i2) 17(16)
N(8) 49(7) 105(11) krge) -17(13)  57(13) -12(15)
N(9) 26 (7) 85(15) 40(8)  -24(18)  16(13) 3(16)
N(10)  55(9) 90(16) 29(8) 25(17) L4 (14) -26(19)
N(IT)  b45(9) B(17) Lo (9) LOL)  L2(1k) -25(18)
N(12)  25(7) 81(14) 2b (1) -27(15)  27(10) ~18(15)
c(1) b2 (11) 76(19) s0(10)  12(22)  51(17) 30(23)
c(2) 46(11) 82(21) 36(9) 19(22) 21(18) 23 (24)
cB3) 53(11) 101(21) 32(9) 4(22) 51(22) L5 (24)
C(4) 69(13) 99(21) 34(9) -5(22)  92(19) 1(25)

2n the form eXP["(B”h‘“FBzzk +333&2+323k{,+ 5]3h&+512hk)].
blsotropic temperature factor.



Table VIT (continued)
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L

A

L

Atom 10“5]] 10“522 108, 108, 10“513 19%,,
c(5) 28(8) 60(15) 28(8)  -11(17)  35(14) -20(18)
c(6) 34(9) 48(15) 33(9) 59(13) -12(i5) -14(18)
c(7) 27(9) 77(18) be(11)  53(22) -18(16) -25(20)
c(8) 35(11) 75(20) 86(17)  36(29)  Lo(22) 2(21)
c(9) Li(11) 104 (24) 75(15)  -3(30)  70(22) -6(25)
c(10)  38(10) 93 (21) 51(12)  37(2%)  50(19) 16(22)
C(i1)  34(9) 83 (20) L1(11) -22(22) 24 (17) 23 (21)
c(12)  61(12) 62(17) 43(11)  54(21)  58(19) 28(22)
c(i3) 89(15) 77(18) 22(9) -2(20)  L3(20) -24(27)
c(ik)  60(12) 85(18) 9(7)  -26(18)  28(15) 11(23)
c(15)  25(7) Lo(14) 34(9) L(18)  22(14) -3 (16)
c(16)  46(10) 32(13) 37(9) L(i7)  L45(16) -18(17)
c(17)  64(13) 53(17) Sk(12) -20(22)  60(21) -19(23)
c(18)  66(13) 52 (17) 64 (1)  33(24)  60(22) -3 (24)
c(19)  80(i4) 43(17) 48(11)  30(21)  69(21) 55(2k)
c(20)  62(13) 79(20) 57(13)  62(25)  70(22) 27(25)
c(21)  35(10) 29(14) ok(16)  23(22)  64(21) 47(18)
c(22) 43(11) 91(20) 50(12)  -9(26)  -4(19) 78(25)



Table VIT (continued)
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Atom 1 ol*;sI . ] 01*;322 1 0433 3 1 ol‘s23 1 oL‘a 13 ] 045] )

c(23)  Lo(m) 107(23) 80(16) Lk(z9)  87(22) -5(25)
C(24) 82(15) 73 (18) Li(n)  =31(22) 92 (21) 3(26)
c(25)  &41(9) 51(1k)  24(8)  30(17)  18(ik) 24(19)
c(26)  L9(11) 48(15) 33(9) ~5(19) 3(17) ~17(20)
c(27)  63(14) 126 (25) 32(11)  h9(25)  29(20) 84(31)
C(28) 115(20) 6L+ (20) 109(21)  61(32) 168(35) 52(32)
c(29) 56(13) 87(21) 85(16) 6(29) 94 (24) 52(26)
c(30) 63 (14) 171 (32) 31(11)  -26(29) 12(20) 121 (33)
c1)  &o(11) 135(28) 93(18)  33(35)  85(24) -29(28)
c(32) L49(12) 116 (25) 71 (16) 80(32) 36(23) -9(28)
c(33) 116(19) 41(17) 55(1%)  10(14)  52(27) -58(29)
c(34) 63 (13) 111 (24) 37(26) -5(20) 22 (20) 22 (29)
c35)  20(9) 105(22) 59(13) -60(28) -13(i7) ~1(21)
c36)  31(9) 81(t9)  31(9) -5(20)  23(15) ~28(20)
c@37) 49(12) 127(27) Lg(13) -22(28) 28(20) =42 (28)
c(38)  48(12) 165(31) 59(14)  28(32) 72(22) -54(30)
c(39) 30(9) 92 (21) 61(13)  29(28) 3(18) -20(22)
co)  s53(11) 69(17) 35(9)  -29(20)  62(17) =37(22)
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Table VITI. Fractional coordinates and isotropic thermal parameters for
calculated hydrogen atoms. The atom number and temperature
factor are those of the carbon atom to which it is attached

Atom X y z b

H(1) .2490 .2819 .2840 4.5]
H(2) . 1848 4158 3124 5.29
H(3) .2491 .5065 4316 4.32
H(4) .3767 4538 .5109 4.24
H(7) . 6001 .3628 .5427 5.32
H(8) .6968 .3136 1959 5.99
H(9) . 6645 .2003 .3883 5.53
H(10) . 5306 . 1435 .3313 5.11
H(1T) .3946 .3508 .2607 L.14
H(12) .3592 -3832 .1259 L.47
H(13) .2956 .2593 . 0362 5.20
H(1k) .2689 . 0981 .0733 L4.62
H(17) -3559 -.1578 .2135 5.06
H(18) 4493 -.2452 .3168 5.68
H(19) .5318 -.1536 4258 5.11
H(20) . 5055 .0193 4351 k.91
H(21) L2146 .5756 .2326 5.58
H(22) -2935 .5172 .1770 7-15
H(23) .2488 L4337 . 0399 5.90

H(24) . 1189 . 5458 -.0317 5.40
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Table VITI (continued)

Atom X Y z 3(.3.2)
H(27) -. 0757 .7328 -.0773 6.77
H(28) -. 1349 .8791 - 0417 7.81
H(29) -. 1249 .9019 . 0841 6.07
H(30) -. 0353 . 8024 .1793 7.92
H(31) . 1540 .7811 . 1894 6.25
H(32) .2384 .8934 .2753 7.41
H(33) .2699 . 8665 .4056 7.19
H(34) .1850 . 7633 k56 5.98
HB7) -.0032 . 5645 4157 6.82
H(38) -.1373 . 587 -353S 6.00
H(39) -.1912 .5704 2113 . 6.68

H(40) -. 1064 . 6064 .1528 k.39




Figure 6. Chromophore T of (CULZT)zICIOA displaying the trigonal bipyramidal coordination
geometry






Figure 7. A formula unit of ((IuLz]:)z'_[CIOL+
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Table TX. Bond lengths (angstroms) and bond angles (degrees) with
standard devi ations ir. parentheses

Cu(1)-N(1) 1.952(15) cu(2)-N(7) 1.981(13)
Cu(1)=N(6) 1 992(16) Cu(2)-N(12) 2.024(12)
Cu(l)=N(4) 2.056(16) Cu(2)-N(10) 2.036(17)
Cu(1)-N(3) 2.094(13) Cu(2)-N(9) 2.060(18)
Cu(1)-1(1) 2.679(3) Cu(2)-1(2) 2.717(3)
N(1)-Cu(l)=N(6) 175.6(10) N(7)-Cu(2)-N(12) 174.7(10)
N(1)-Cu(1)~-N(4) 95.4(10) N(7)-cu(2)-N(10) 93.7(11)
N(1)-Cu(1)-N(3) 86.3 (10) N(7)-Cu(2)-N(9) 90.3(11)
N(1)-Cu(l)-1(1) 88.4(7) N(7)-Cu(2)-1(2) 87.3(8)
N(6)=Cu(1)-N(L) 85.5(10) N(12)=-Cu(2)-N(10) 88.4(11)
N(®)=-Cu(T)=N(3) 97.8(11) N(120-Cu(2)-N(9) 9k.2(10)
N(6)-Cu(1)-1(1) 88.0(8) N(12)=Cu(2)-1(2) 87.8(7)
N(&)-Cu(1)-N(3) 102.3(10) N(10)-Cu(2)~N(9) 99.8(11)
N(&)-Cu(l)-1(1) 137.9(7) N(10)=Cu(2)-1(2) 135.5(8)
N(3)-Cu(l)-1(1) 119.8(8) N(9)-€u(2)-1(2) 124.7(8)

ligand 1 [c(1)-C(10)

mean C-C

mean C-N (pryidyl)
mean C-N (bridge)

ligand 2 [C(11)-C(20)

mean C-C

mean C-N (pyridyl)
mean C-N (bridge)

N(1)-N(3)]
1.39(2)
1.34(2)
1.35(2)

N(&)-N(6)]
1.37(2)
1.35(2)
1.42(2)
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Table IX (continued)

ligand 3 [C(21)-C(30) N(7)-N(9)]

mean C-C 1.36(2)
mean C-N (pryidyl) 1.36(2)
mean C-N (bridge) 1.39(2)

ligand & [C(31)-C(40) N(10)=N(12)]
mean C-C 1.37(2)
mean C=N (pryidyl) 1.31(2)
mean C-N (bridge) 1.41(2)
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two nitrogen atoms. By adopting this geometry, ligand-ligand nonbonded
repulsions are minimized. The copper-nitrogen equatorial bonds appear
to be slightly but significantly elongated compared to the axial ones,
the average equatorial distance being 2.06 & vs 2.00 } for the average
axial distance. This type of equatorial elongation has been observed

23

to various degrees in other complexes of this type ™~ and has been dis-

cussed by Raymond et gl;?h The copper-iodide distances agree well with

that reported by Barclay 33_31;25

The bound iodide atoms display pro-
nounced anisotropic thermal motions (Figure 6); the smallest component,
approximately in the direction of the copper~iodide bond, is 0.193 }
(0.201 {) and the largest, 0.324 % (0.350 }), is at an angle of 41°
(50°) with the equatorial plane. This pattern of motion is quite con-

sistent with the steric restrictions imposed by the axial nitrogens and

the other ligand repulsions.

The deviation from trigonal-bipyramidal geometry manifests itself
primarily in angular distortions about the equator. Although the
1(1)-Cu(1)=N(3) angle is normal at 119.8° (124.7°), the 1(1)=Cu(1)-N(4)
is 137.9° (135.5°) reducing the N(3)-Cu(1)=-N(4) angle to 102.3°
(99.8%).

In the ligand itself, the carbon-nitrogen bond distances within
the pyridine rings average 1.34 } while the bridging C-N distances
average 1.39 A; the carbon-carbon distances average 1.37 i The
individual pyridine rings are planar within standard deviations.

The ligands themselves are bent considerably about the bridging

nitrogen atoms with dihedral angles between the pyridine rings of
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33° (33°) and 37° (40°). In CuLz(Cloh)2 the dihedral angle was found
to be 9.6°; the variation in this angle illustrates the flexibility of
the ligand. The six-membered chelate rings formed by the copper and
the bidentate ligands are all in a boat configuration, with the copper
atom 0.78 A below the plane of the other four atoms of the ring on

the average, and the bridging nitrogen 0.29 X below this plane. The
shorter nonbonded distances between atoms in the same coordination
species are listed in Table V, the minimum distance being 2.80 %
between H(10) and H(20).

The nonbonded iodide is located 6.78 & from Cu(l) and 5.52 &
from Cu(2) while the chloride of the perchlorate group is located
5.56 & and 7.35 & from Cu(1) and Cu(2), respectively. There are
no unusually short contacts between the two chromophores, the shortest
being 2.34 A between H(14) and H(28).

There are no apparent steric effects that would lead to the
nearly identical distortions from the trigonal-bipyramidal geometry
displayed by both chromophores; therefore electronic effects must be
considered. Hathaway and his coworkers have proposed that in the
similar compound iodobis (2,2'bipyridyl) copper(IT) iodide.25 the
bound iodide may be occupying two coordination sites of a cis-distorted
octahedron, thereby explaining the reduction of the equatorial
]Qo.26,27

N-Cu-N bond angle from 120° to 1 This cis-distorted geometry

has been observed in nitritobis (2,2'bipyridyl) copper (II) nitrate

where the angle is 102°. 18
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In Figure 8 the coordination geometries of the 2,2'bipyridyl
complexes mentioned above are schematically drawn along with that of
the 2'2'bipyridylamine complex. It should be noted that the equatorial
N-Cu-N bond angles of the nitrito complex and the 2,2'bipyridylamine
iodide complex are similarly reduced.

An alternative explanation for the equatorial angular asymmetry
as well as the reduction of the equatorial N-Cu-N bond angle would be
that the trigonal bipyramid is distorting toward a square pyramid with
N(3) at the apex. This view is supported by the large N(&)=Cu(1)-1(1)
angle, while all but the N(3)-Cu(1)-T(1) angles involving N(3) are
within 12° of the 90° angle expected for the square pyramid. It
should also be noted that Lancaster et al., on the basis of electronic
spectra, had predicted a square pyramid with the iodide at the apex

for iodobis (2,2'bipyridylamine) copper (II) iodide perchlorate.5



Figure 8. Comparison of coordination geometries of similar 2,2'bipyridyl complexes with that of
the 2,2'bipyridylamine compliex
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Table X. Nonbonded intramolecular distances (1)

N(1) --- N@3) 2.80 N(7) ... N(9) 2.87
H(10) -.. H(20) 2.80 H(30) ... H(4O0) 2.93
.N(l) .-« N(b4) 2.99 N(7) ... N(10) 2.93
NB) -.- N(6) 3.08 N(Q) ... N(12) 2.99
H(1) -.. H({T) 3.10 H(21) ... H(31) 3.00
Cu(l) ... N(2) 3.13 Cu(2) ... N(8) 3.15
Cu(l) -.. N(5) 3.19 Cu(2) ... N(11) 3.18
(1) .- N(6) 3.28 I(2) ... N(12) 3.33
(1) --- N(1) 3.29 I(2) .- N(7) 3.33
NGB) ... N(&) 3.33 N(@Q) ... N(10) 3.13
(1) --- N(3) L.15 T(2) ... N(9) 4.23

() ... N(%) b. L2 I(2) ... N(10)  L.bLI
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THE STRUCTURE OF DI ISOTHIOCYANATOBIS (2,2'BIPYRIDYLAMINE)
COPPER(TT) ISOTHIOCYANATOBIS (2,2'BIPYRIDYLAMINE)

COPPER (TT) PERCHLORATE

I ntroduction
As part of a series of structural investigations of metal complexes
with the ligand 2,2'bipyridylamine, the preparation and structural
characterization of CuLzNCSCIOA (L = 2,2'bipyridylamine) were undertaken.
Subsequent analysis showed this to be a mixture of CuLz(NCS)2 and

CuL NCSC]OA-

2

Experimental

The preparation reported by McWhinnie for CuLzNCSCIOA was
followedh and the reaction appeared to proceed as expected yielding
small dark green crystals as had been found by McWhinnie. However,
the preliminary single crystal data were not consistent with the simple
stoichiometry reported by McWhinnie. Subsequently, the crystals were
shown to be a co-crystallized mixture of diisothiocyanatobis (2,2'bipyri-
dylamine) copper (II), [CuLz(NCS)z], and isothiocyanatobis(2,2'bipyri-
dylamine) copper (II) perchlorate, [CuLZNCSCIO4], hereafter referred to
as compound I and IT respectively.

Crystal Data.--C43N]5H36Cu2530104 MI = 522.10 g/m, M 1= 563.47 g/m

I
monoclinic, a = 12.74+.02, b = 14.48+.01, ¢ = 19.33+.03 j, B = 93.84 +

.40°, v = 3558 3?, Dm =1.59 g/cec, Z_ =2, Z__=4, DC = 1.55 g/cc,

I II
F(000) = 1810 e, space group Py (¢ S) from systematic
/¢ 2h
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absences hOg, for g = 2n+l and 0k0 for k = 2nt+l, Mo-Kx X-radiation,

A = 0.7107 &, u(Mo=Kx) = 11.32 cm-]. The unit cell parameters were
determined from repeated measurements of 2¢ values of high order
reflections whose centers were determined by left-right top~bottom
beam splitting on a previously aligned Hilger and Watts four-circle
di ffractometer (Mo-KX radiation 3 = 0.7107 i). The observed density
was determined by floatation in carbon tetrachloride.

A crystal having approximate dimensions .24 x .12 x .062 mm was
mounted with the b axis (.24 mm) aligned along the spindle axis. Data
were collected at room temperature utilizing a Hilger and Watts four-
circle diffractometer equipped with a scintillation counter and using
Zr-filtered MoKy radiation. Within a 2g sphere a 40° all data in the
bk and 555 octants were recorded using a g-2p step-scan technique
with a take-off angle of 4.5°. Symmetric scan ranges of 1.00° in 2g
at low two-theta values to 2.00° at high two-theta values were used.
Stationary crystal-stationary counter background measurements were
made at the beginning and end of the scan, each measurement being
made for one-half the total scan time. The counting rate was
0.2048 sec per step of 0.02° in two-theta. A total of 3501 reflections
were measured in this way. Three standard reflections were observed
periodically and these observations indicated that no decomposition
occurred during the data collection.

The intensity data were corrected for Lorentz-polarization ef-
fects and for effects due to absorption. The absorption correction was

28

made using a modified version of OR ABS; the maximum and minimum
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transmission factors were 0.93 and 0.79 respectively. The estimated

error in each intensity was calculated by
2 2 2 2, ,,2
[o(D)]” = [og + Cp + (KC)™ + (KyCp)™ + (KgC)1/A

where CT’ CB’ CR’ and A are total count, background count, net count,
and transmission factor while KT’ KB’ and KR are estimated non-statis-
tical errors in C., CB, and CR. KT and KB were assigned values of .05
and KR .03. The equivalent values of the intensities were then
averaged. The estimated standard deviations in each structure factor
was calculated from the mean deviation in intensity by the method of
finite differences.8 The reciprocals of the structure factor variances
were used as weights in the least squares refinement. The results
reported are based on 1855 observed reflections which had an intensity

greater than 3¢(I), a criteria that appeared valid from measurements

of intensities of symmetry extinct reflections.

Solution of the Structure
From the symmetry of the monoclinic space group le/c and the
presence of approximately six molecules of stoichiometry CuLZNCSCIOA
per unit cell, two of the six molecules must necessarily possess a
center of symmetry, which would be impossible for ordered CuLZNCSC]Oh,
assuming a monomeric species with a copper at a T site. Thus, the

stoichiometry was immediately suspect. A copper atom was assumed at

0.5, 0.0, 0.5, and the other copper atom in the asymmetric unit was
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readily located from a sharpened Patterson map;ZI all other nonhydrogen
atoms were subsequently found by successive structure factor and
electron density map calculations. With all atoms isotropic, the
structure refined to 16.4%. At this point a difference electron
density map indicated appreciable anisotropic motion, especially of

the copper, chlorine, and sulfur atoms. Refinement with these heavy
atoms anisotropic produced an R factor of 14.0% and weighted R factor

3

R, = [Zm(lFol‘!Fcl)Z/Zw]FOIZ]% of 14.4% '3 A difference electron
density map at this stage showed no significant peaks, indicating all
nonhydrogen atoms had been located- Hydrogen positions for the
aromatic rings were calculated assuming a benzoid structure with a

C-H bond distance of 1.07 i. Each hydrogen atom was assigned the
isotropic temperature factor of the carbon to which it was attached.
The scattering factors used were those of Hansen g;_gl;]] with copper,
chlorine, and sulfur modified for the real and imaginary parts of
anomalous dispersion.]2 The final values of the observed and calculated
structure factors (x 10) are listed in Figure 9. The final posi-
tional and thermal parameters for the nonhydrogen atoms are given

in Tables XI and XII. The calculated hydrogen positions are given

in Table XIII. Bond distances and angles about the copper (II) ions

are given in Table XIV, along with the average distances for chemically
equivalent bond lengths in the individual ligands. Results for least

squares planes calculations involving the metal ions are provided in

Table XV.



Figure 9. Observed and calculated structure factors (x 10) for
Cut, (NCS)ZCULZNCSClou (L = 2,2'bipyridylamine)
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Table XI. Final atomic coordinates and isotropic thermal parameters
with standard deviations in parentheses®

Atom x y z 8(3%)
cu(l) .50°® .00 500 emeeee c
Cu(2) .9406(3) .3700(2) 1775 23 H——
cl - 4584 (7) .4301(6) 3485(5) 000 mm—e--
s(1) .8573 (12) -1409(11) 4997(7)  mmeme-
s(2) -8698(8) .6889(6) .3319(4)  =mee--
o(1) -5382(21) -3669(19) -3527(13) 7-4(6)
0(2) .3671(21) .3886(17) .3698(12) 7.0(6)
0(3) .4501 (26) .4637(22) .2803 (18) 11.4(9)
o4) -4789(25) -5075(24) .3978(16) 11.0(9)
N(T) .4349(18) . 0408(16) Loug(11) 3.4(5)
N(2) .4740(18) .1958(i5) .1288(12) 3.3(5)
N(3) -L504(17) -1234(15) -5346(11) 3.0(5)
N (L) .6707(22) . 0663 (19) 4671 (14) 6.0(7)
N(5) .0271(16) S3774(14) .2709(10) 2.3(%)
N(6) -8857(17) -3553(15) .1793(11) 2.8(5)
N(7) .8289(17) -2879(14) -2821(12) 3.1(5)
N(8) .8721(19) .3834(16) .4320(12) 3.9(6)

®Estimated standard deviations are given for the least significant
figures.

b . oL . .. -
Asterisk () indicates position fixed by symmetry.

CAnisotropic temperature factors for Cu, Cl, and S atoms are
given in Table X7T.



Table XTI (continued)

Atom . y z 8(32)
N(9) .0308(19) .3410(17) .5011(12) 3.8(6)
N(10) - 0384 (20) -2710(18) -3895(13) L.8(6)
N(11) .8953 (19) .5001 (19) .3195(12) 4.4 (6)
c(1) .3859(25) .0313 (20) .3628(15) L.2(7) -
c(2) -3501 (25) .0038(24) -2933(17) 4.9(8)
c(3) -3668(23) .0889(20) -2723 (15) 3.5(7)
ct) 4124 (22) .1535(18) .3170(15) 3.2(7)
c(s) -4319(20) -1291(19) -3897(14) 2.7(6)
c(6) 4559 (19) -1989(18) -498k (14) 2.3 (6)
c(7) JLh1o(24) .2888(21) .5340(17) 4.1(8)
c(8) .L051 (27) .2961 (24) .6002 (19) 5.9(9)
c(9) .3986 (26) .2108(22) .6308(16) 4.8(8)
c(10) 4169 (22) .1257(22) .6017(15) 3.9(7)
c(it) .7538(17) L1151 (14) -4875(11) 0.10(6)
c(12) .1271 (30) .4085(23) .2778(18) 5.5(9)
c(13) L1924 (31) .4375(26) .2292(21) 6.7(10)
c(1k) . 1493 (26) .4571(22) .1578(17) L.8(8)
c(15) . 0398(27) .b270(21) L1462(17) L.54(8)
c(1é) - 9829 (29) .3851(23) .1971(18) 5.7(9)
c(17) .8292 (25) .2986 (21) .2098(17) 4.1(7)
c(18) . 7475 (28) .2390(23) .1707(17) 5.3(8)
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Atom X y z 8(1%)
c(19) . 6806 (25) .1892(21) .2083 (17) 4.2(7)
c(20) -6877(31) -1737(26) -2793 (21) 6.8(10)
c(21) . 7613 (25) .2334 (22) .3157(16) 4.2 (8)
c(22) . 7694 (25) -4197(20) 4312 (16) 4.0(7)
c(23) - 7230(26) -4475(23) - 4884 (18) 5.1(8)
c(24) . 7825(27) 4136 (22) .5450(17) 5.0(8)
c(25) - 8854 (24) -4096 (20) .5550(15) 3.8(7)
C(26) -9351(23) -3778(19) -4963 (15) 3.3(7)
c(27) . 065k (24 ) -2759(21) .4600(16) 3.9(7)
c(28) . 1407(23) 2056 (19) .4890(15) 3.4(7)
c(29) -1699(27) - 1381 (24) -h451(18) 5.6(9)
c(30) - 1364 (25) -1316(23) .372(17) 5.0(8)
c@31) . 0641 (23) .2018(21) .3501(15) 3.6(7)
c(32) - 8791(27) .5772 (25) .3249(17) 4.9(8)




Table XIT. Anisotropic temperature factors® with standard deviations in

parentheses
Atom By P2 P33 B2 P13 B3
Cu(l) 97(5) 21(2) 13(2) 8(3) -19(2) -1(2)
Cu(2) 64(3) 27(2) 17(1) 2(3) -9(1) 1(1)
C 58(7) 58(5) L1 (k4) 19(6) =5(4) 14 (k)
s(1) 202(18) 135(12) 67(6) ~70(12) 34(8) 29(7)
s(2) ho(11) 77(5) 22(3) L (6) =26 (5) 3(3)

9The ﬁ1j and their standard errors are X 10“. The Blj are defined by:

T= exp[-(hzﬂll +_l_<_2322+_1‘2ﬂ33 +2hl<_B]2+2hLB]3 +2_l3L323] .

99
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Table XIII. Calculated hydrogen atom positionsa

Atomb X y z

H(T) 377 -.099 .381
H(2) .312 -. 051 .259
H(3) 344 .109 .221
HG) 433 .219 .299
H(7) -458 .350 .508
H(8) .386 .359 .624
H(9) 377 .210 .682
H(10) 406 . 065 .629
H(12) . 045 412 .269
H(13) 273 46 .243
H(14) .192 .489 .120
H(15) .002 438 .097
H(18) . 743 .236 .16
H(19) .616 159 .180
H(20) 6Lk .123 .304
H(21) . 764 .235 .370
H(22) . 724 425 .384
H(23) .652 Ny L84
H(24) . 748 L6k .600
H(25) .929 .407 .603
H(28) .170 .208 . 541
H(29) .221 . 089 466
H(30) .163 . 080 .335
H(T) . 029 .198 .299

aHydrogen posi tions were calculated assuming a
benzoid structure and a bond length of 1.07 A.

bThe atom number is that of the carbon atom to
which the hydrogen is attached.
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Table XIV. Selected interatomic distances and angles for Cu!.z(NCS)2

CuL,NCSCIO,,
Atoms Distance (1) Atoms el.‘:?;iz(jt)f
Cu(1)-N(3) 2.02(2) N(3)=Cu(1)=N(1) 94
Cu(1)-N(1) 2.05(2) N(3)=Cu(1)=N(1)* 85
Cu(1)-N(k) 2.49(3) N(3)=Cu(l)~N(&) 87
Cu(2)-N(5) 1.86(2) N(3)=Cu(1)~-N(4)' 92
Cu(2)-N(8) 1.96(2) N(1)=Cu(1)=~N(k) 91
Cu(2)-N(11) 2.02(2) N(1)=Cu(1)=-N{&)" 88
Cu(2)=N(10) 2.05(2) N(5)=Cu(2)~N(8) 166
Cu(2)=-N(7) 2.16(2) N(5)=Cu(2)~N(11) 86
s(1)-c(11) 1.373) N(5)=-Cu(2)~-N(10) 89
$(2)-c(32) 1.63(3) N(5)=-Cu(1)~N(7) 90
C(IT)=N(k4) 1.32(4) N(8)-Cu(2)-N(11) 88
C32)-N(11) 1. 14 (4) N(8)=-Cu(2)~N(10) 89
cr-o(i) 1.37(3) N(8)-Cu(2)-N(7) 102
ci-0(2) 1.39(3) N(11)-Cu(2)-N(10) 155
c1-0(3) 1.50(4) N(11)=-Cu(2)-N(7) 102
c1-0 (&) 1.48(3) N(10)=Cu(2)-N(7) 102
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Mean Distances for Chemically Equivalent Bonds

ligand 1 [C(1) ... c(10) N(I) ... N(3)]

mean C-C
mean C-N

mean C-N

ligand 2
mean C-C
mean C-N

mean C-N

ligand 3
mean C-C
mean C-N

mean C-N

(pyridyl)

(pyridyl)

(pyridyl)

[c(i2) ...

[c(22) ...

1.42(3)
1.36(3)
1.35(33)

c(21) N(5) ---

1.h2 (&)
141 (%)
1.30(%)

C(31) N(8) -..

1.41 (%)
1.39(4)
1.33 (%)

N(7)]

N(10)]
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Table XV. Least squares p]anesa

Plane L m n k
] .879 -h2h -.220 2.9
2 .672 . 562 -L481 LN

Deviations from Plane

Atom Plane 1 Plane 2
cu(l) 0.00

Cu(2) -.337¢
N(T) 0.00

NG) 0.00

NG )P 0.00

N(5) -.10
N(7) -2.48"
N(8) -.10
N(10) .10
N(T1) .10

aThe planes ¢X' +mY' + nZ* +k = 0 are referred to
orthogonal axes. The transformation form fractional cell
coordinates (x,y,2) is X' = ax+cz(cosB), Y' = yb,
Z! = zVW/ab.

bPrimed atoms related to unprimed atoms by the
symmetry operation l-x, -y, I-z.

Cstarred atoms were not included in least squares
plane.
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Description of the Structure and Discussion

The crystal structure of the co-crystallized complexes di-
isothiocyanatobis (2,2'bipyridylamine) copper(II) and isothiocyantobis
(2,2'bipyridylamine) copper (II) perchlorate consists of two monomeric
molecules in the asymmetric unit. The first species CULZ(NCS)2
utilizes a centrosymmetric special position of the space group, while
CuLzNCSC10h is in a four-fold general position. The geometry of
CuLz(NCS)2 and CuLzNCS+ are shown in Figures 10 and 11, respectively,
while Figure 12 is a view of the formula unit.

In CuLz(NCS)z, the copper (II) ion is in a tetragonally distorted
octahedral environment with | symmetry. Hence, the 2,2'bipyridylamine
ligand coordinates in a bidentate fashion with Cu-N bond lengths of
2.02 and 2.05 i, while the isothiocyanate groups are trans to each
other with a Cu-N distance of 2.50 A&. N(1), N(3), N(I1)', N(3)'" are
coplanar with the copper atom within standard deviations (see Table XV
and Figure 9). There is very little angular distortion from true
octahedral geometry, with the elongated isothiocyanate nitrogen forming
nearly 90° N~Cu-N bond angles with the nitrogens of the bidentate
ligand. The intraligand N-Cu-N angle is 85°, reflecting the geometric
requirements of the ligand.

In the five coordinate species the copper is bound to the pyridyl
nitrogen atoms of two bidentate ligands and to the isothiocyanate
group in a configuration that is best described as square pyramidal.
The atoms in the base consist of N(5), N(8), N(10), N(11) with N(7) at

the apex. The copper nitrogen bond distances in the base are normal



Figure 10. A view displaying the tetragonally distorted geometry of
the di-isothiocyanatobis (2,2'bipyridylamine) copper (II)
moiety






Figure 11. A view of the isothiocyantobis (2,2'bipyridylamine) copper(ITI) Ton, displaying
the square pyramidal geometry
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Figure 12. A formula unit of Cul, (NCS ), Cul,NCSC10, (L = 2,2'bipyridylamine)
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except Cu(2)-N(5) at 1.86 A. (Since the crystal was a poor diffractor,
there were a large number of small reflections with associated large
relative errors. It is likely that this anomalously short distance
is due to a systematic effect from this poor diffraction data and
therefore should be viewed with skepticism. Such effects can also be
seen in other bond distances in the a direction in particular. The
overall stereochemistry is well established, however.) * The choice of
basal atoms is supported by the near planarity of the four atoms
(Table XV) and the bond angles of approximately 90° formed by
N(10)-Cu(2)-N(8) (897), N(8)-Cu(2)-N(11) (89°), N(5)-Cu(2)-N(11) (87°),
and N(10)-Cu(2)-N(5) (89°). The copper atom is above the plane of
the base by -33 & and forms a bond of 2.14 & with N(7); this vector
is perpendicular, within experimental error, to the basal plane. This
distance is quite typical of the apex distance found in other copper (II)
square pyramidal complexes, as is the position of the copper atom above
the plane of the base.3

The 2,2'bipyridylamine ligands of both chromophores are bent
considerably about the bridging nitrogen. In the centrosymmetric
complex the dihedral angle between the two pyridine rings is 38° and
thereby reduces the crowding between the two ligands. The distance
between C(10) and C(1') is 2.90 X while the distance between the
associated hydrogen atoms is 2.83 4. The dihedral angle in this
chromophore is identical to the similar angle found in the square
planar palladium complex with this ligand.6 In the five coordinate

species the dihedral angles for ligands 2 and 3 (defined in Table XIV)
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are slightly different from ligand 1 at 25° and 35°, respectively.

in (CuLzI)zICIOQ (L = 2,2'bipyridylamine), a five=-coordinate trigonal
bipyramidal complex, the angles are 38° and 33°, while in the distorted
tetrahedral complex, CULZ(CIOA)Z’ the ligand is nearly planar with a
9.6° dihedral angle. The six-membered chelate rings in these complexes
are quite similar, all showing approximately the same degree of folding
in the boat conformation. For ligands 1, 2, and 3 (defined in

Table XIV) the copper atom is .77, .68, and .78 % below the plane
defined by the other four atoms, while the nitrogen atoms are .41, .18,
and .19 & below the plane.

The average carbon-carbon bond distance in the ligand is 1.42 §,
while the average C-N distance in the pyridyl ring is 1.39 4 and the
average C-N bridging distance is unusually short at 1.34 4.

The isothiocyanate group bound to Cu(l) forms a Cu-N-C bond
angle of 144°, considerably distorted from the normal linear configura-
tion. Smaller angles have been reported, however, for the isothiocyanate
29

group bound to a transition metal, the smallest being 140°. The

N-C and C-S distances found in the isothiocyanate group in molecule T
do not agree well with accepted literature values. Unusual behavior
of the thermal parameters for S(1) and C(11) lead to the conclusion
that this group is also effected by the poor data mentioned earlier.
The isothiocyanate group in molecule TT, however, is quite normal in
distances and is more nearly linear with a Cu(2)~N(11)~C(32) bond

angle of 161°.
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Lancaster has recently pointed out that the infrared spectra

for Cul NCSCIOA is indicative of two crystallographically unique

2
isothiocyanate groups.zs This leads to the speculation that the
compound originally reported by McWhinnie may indeed be the same as
the mixture in this study.

The observed crystal structure is stabilized by hydrogen bond
formation (Table XVI) involving as receptor atoms the sulfur atoms
of the isothiocyanate groups in each chromophore and an oxygen atom
of the perchlorate group. In each case the linkage is with an amine
hydrogen atom. The N(2) ... 0(l1) distance of 3.08 i is within that
normally found for N-H ... 0 hydrogen bond formation. Also the bond
angles 0(1)-N(2)-C(5) (114°) and 0(1)-N(2)-C(6) (100°) indicate the
near linearity of the linkage. In the crystal structure of the
parent uncoordinated ligand, which is also stabilized by hydrogen
bonding, the C-N-H bond angle is 114°.

Hydrogen bonding also occurs between S(1) and N(6) at a distance
of 3.49 } and bond angles of 117 and 107° for C(17)-N(6)~S(1) and
C(16)-N(6)~S(1), respectively. An additional hydrogen bond links the
two positive ions, the S(2) ... N(9) distance being 3.44 £ with bond
angles of 111° and 113° for C(27)-N(9)-S(2) and C(26)-N(9)-S(2).
Crystallization is a commonly used technique for purification and
separation of materials. It is unusual to find two such metal com-
plexes co-crystallizing. The hydrogen bonds between the neutral

complex and the two ions of compound TT may well account for this

behavior.



81

Table XVI. Hydrogen bonds® in CuLz(NCS)ZCuLZNCSCIOQ

Bond i A °
N_Ho?.. , DIStiﬂfs (2) Anglesc )
b
N@2)-H® ... 0(1) 3.02 14, 110
N(6)-H ... s(1)T 3.47 117, 107
N(9)-H ... s(2)I! 3.42 1M1, 113

®Roman numerals refer to the following symmetry transformation:
It X, 3=Y, 2=%5 IT: l=x, 1-y, 1-2z.

b ..
Hydrogen atom positions were not located.

a1l hydrogen bond linkages are to amine hydrogen atoms. The
bond angles referred tc 2re the C-N ... Y for the two carbon atoms
bound to the nitrogen. In the parent uncoordinated ligand a hydrogen
bond of this type stabilizes the crystal structure and a C~N-H bond
angle of 114° was found.
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THE STRUCTURE OF 2,2'BIPYRIDYLAMINE

Introduction
The structural study of 2,2'bipyridylamine was undertaken to
obtain accurate structural parameters for this moiety since it has
been finding wide use as a ligand in transition metal complexes.
McWhinnie has recently reviewed this aspect of its ligand chemistry.I

The compound itself was first reported in 1923 by Wibaut and Dinge-

manse.30 Two crystalline modifications of the compound are known, one
melting at 84° and a second melts at 9%4°. The structure of the low

melting polymorph was determined in this study.

Experimental

Crystal Data.--2,2'bipyridylamine, C]0H9N3, M=171 g/m
18.416 + .005, b = 12.294 + . 005,

Orthorhombic, P__ , a
cen’ =

c=7.691 + .007 §, V= 1741.3 £, o= 1.31 g/cc, 2 = 8, F(000) = 720 e,

1.03 cm-], M.P. = 84°.

Mok, (A = 0.7107 k), u
Recrystallization of reagent grade 2,2'bipyridylamine from carbon
tetrachloride yielded large colorless crystals of rectangular needle-
like habit and well-formed faces. Precession and Weissenberg photographs
exhibited mm m Laue symmetry with the following systematic extinctions:
hOz when £ = 2n+1, 0Okt when £ = 2n+1, and hkO when h+k = 2n+l. These
absences uniquely determine the space group as Pccn' The unit cell
parameters and their standard deviations were determined by a least
19

squares fit to 12 independent reflection angles ~ whose centers were

determined by left-right, top-bottom beam splitting on a previously

aligned four-circle diffractometer.
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For data collection a crystal of dimensions .10 x .25 x .50 mm
along the a, b, and c crystal axes respectively was mounted such that
the ¢ axis was along the spindle axis of the goniometer. Since crystal
decomposition in the atmosphere had previously been noticed, the
crystal was housed in a thin-walled Lindemann glass capillary. Data
were coliected at room temperature (24°C) utilizing an automated four-
circle diffractometer designed and built in the Ames Laboratory. The
upper full circle was purchased from Stoe and equipped with encoders
(Baldwin Optical) and drive motors. The base was so designed that
encoders could be directly connected to the main y and 2n shafts,
using solid and hollow shaft encoders, respectively. The diffractometer
ic interfaced to a PDP-15 computer and is equipped with a scintillation
counter. Two equivalent octants of data were collected within a 2g
sphere of 40°. The g~2p step scan technique, .01°/step counting for
.10 sec/step, was employed with a takeoff angle of 3°. To improve
the efficiency of the data collection process, variable-step symmetric-
scan ranges were used. The scan varied from 1.12° in 2g at low two-
theta values to 1.72° at large two-theta angles. Stationary-crystal,
stationary-counter back-round counts of one-half the time required to
scan the peak were taken at the beginning and end of each scan. Before
the scan was made each peak was maximized in g Also if the reflection
did not exceed the backround by seven counts or more, which corresponds
to approximately three standard deviations in the backround for larger

values of 25, no further measurements were made on the reflection.



As a general check on electronic and crystal stability, the in-
tensities of three standards were remeasured every twenty-five reflec-
tions. These standards showed no decrease over the entire period of
data collection. A total of 1771 reflections were recorded in the
hks, and ﬁk& octants.

The intensity data were corrected for Lorentz-polarization
effects. Because of the small linear absorption coefficient, no ab-
sorption correction was made. The minimum and maximum transmission
factors were .95 and .99, respectively. The individual values of Foz
from the equivalent octants were averaged to yield 809 unique Fo
values. The standard deviation in each intensity was estimated from

the average total count and backround values by

[o(D1% = [c, + ¢, + (0-05 c,) + (0.05 ¢,)] .

2 .
0f the 809 unique reflections,'567 had Fy~ 2 3.0 o(I).- The estimated

standard deviation in each structure factor was calculated by the
method of finite differences. The reciprocals of the squares of the

structure factor variances were used as weights in the least squares

refinement.

Solution and Refinement

Normalized structure factors3] were calculated preliminary to

a direct method structure determination attempt. However, the Wilson

plot from which the scale factor and temperature factor were obtained
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gave quite a poor fit to a straight line. Subsequent phasing via the
s-2 relation lead to a chemically satisfying model, but one which would
not refine.

At this stage it was noticed that the eeo and eoo parity groups
had average values of lE!z significantly below 1.0. These parity
groups were arbitrarily rescaled to 1.0 and the program MULTAN32 was
employed to obtain phases for all reflections with E's greater than
1.0. The E-map computed unambiguously showed the positions of all 13
heavy atoms in the structure. The model originally produced by the
-2 application was related to the true structure by a two-fold
rotation about the point x = 1/2 and y = 3/4. With all atoms but the
bridging nitrogen input as carbons, four cycles of least squares re-
finement produced a crystallographic discrepancy factor of 13.27.

The ring nitrogen positions were readily determined by their low
temperature factors and by their shorter bond distances. With all
atoms isotropic, R was 11.00%, and the weighted R factor,

R, = [zu(lFgl - [Fcl)zlmlFo!z] 715, was 12.90% for the 567 observed
reflections. The scattering factors used for the carbon and nitrogen
were those of Hansen gg.gl;]] A difference electron density map at
this stage showed that all nonhydrogen atoms had been accounted for,
but some anisotropic motion was evident. Three additional cycles of
anisotropic refinement of all heavy atoms reduced the discrepancy
factor to 9.8% and Rm to 11.3%. A subsequent difference map clearly

indicated all nine hydrogen atom positions.



86

At this stage two reflections, 202 and 220, appeared to be
severely effected by extinction and were removed from the refinement.
The hydrogen positions were input lowering the agreement factor to
L.1%, however, some of the isotropic thermal parameters went negative.
This was attributed to the use of the isolated hydrogen atom scattering
factors leading to an undesirable interaction between the thermal
parameter and the aspherical electron density distribution for bound
hydrogen, as described by Jenson and Sundarlingam.33 Using the con-
tracted hydrogen atom scattering factor of Stewart, Davidson, and
Simpson,Bh posi tive isotropic thermal parameters were derived. With
these scattering factors refinement gave a final discrepancy factor of
3.8% was obtained, with Rw = 4.3% for the 565 observed reflections.

At this point two final cycles of least squares were run with all 807
uniquely measured reflections yielding R = 6.2% and Rw = 5.3% No
appreciable shifts in atom positions occurred. The final value of
[ 2/(NO-VN)]%—'was . 7823.

In Table XVIT are listed the final positional and thermal param-
eters of the heavy atoms along with their standard deviations. The
refined positional and isotropic thermal parameters and their standard
deviations for the hydrogen atoms are given in Table XVIII. Standard
deviations given were obtained from the inverse matrix of the final
least-squares refinement cycle. A list of all 807 unique recorded
and calculated structure factors {(x !0) is found in Figure 13. The
bond lengths and bond angles with standard deviations are given in

Tables XIX and XX and in Figure 14. Significant nonbonded distances



Table XVII.

Final heavy atom atomic coordinates and thermal parameters for 2,2'bipyridylamine®

Atom

* Y ? Py P22 P33 P12 P13 P23

c(1) 0.4805(2)  0.8697(%)  0.2168(5)  31(2)  85(4)  259(10) 11(2) -7(3) 1(5)
c(2) 0.4524(2)  0.7692(4)  0.1838(5)  30(2)  94(4)  240(9) -3(2) -12(3) -24(5)
c(3) 0.4955(2)  o0.6806(4)  0.2183(5) W3(2) 73(4) 253(00) -5(2) -8(3) -25(5)
c(l) 0.5635(2)  0.6964(3)  0.2846(5)  34(2) 61(3)  2h9(9) 3(2) =-15(33) -20(5)
c(5) 0.5876(2)  0.8018(3)  0.3162(4)  22(1)  69(3)  173(8) 6(2) 2(2) -8(k)
c(6) 0.6912(2)  0.9073(3)  O.4451(4)  26(1)  55(3)  172(7) 0(2) 0(3) 5(4)
c(7) 0.6558(2)  1.0030(3)  0.4934(5)  31(2) 69(3) 218(9) 11(2) -6(3) -lk(k)
c(8) 0.6964(2)  1.0868(3)  0.5580(5) 39(2) 66(3)  241(9) 10(2) -6(33) =-15(5)
c(9) 0.770k(2)  1.0761(3)  O0.5742(5)  L2(2)  66(4)  224(9) -5(2) -4(3)  -8(5)
c(io)  0.8007(2)  0.9783(3)  0.5273(5)  28(2)  82(4)  231(9) -2(2)  -8(3) 2(5)
N(1) 0.5469(2) 0.8888(2) 0.2825(l4) 25(1) 75() 249(7) 5(1) =10(2) -4 (3)
N(2) 0.6564(2)  0.8157(3)  0.3834(4)  26(1) 54(3)  257(8) 7(2)  =6(2)  -h(4)
N(3) 0.7630(2)  0.8946(2)  o0.4624 (k)  26(1)  59(2)  226(7) 1(1)  -h(2) 1(3)
8standard deviations of the cpordinates are for the least significant figure. The ﬁij and
their standard deviations are x 1

T = expl- (478, + KBy, + &2533 + 20kB), + 2ZheB, + 2keByy)] .

. The Blj are defined by:

L8



Table XvIII.
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Refined hydrogen atom parametersa

Atom X y z 8 (3%)
H(T) 0.454(2) 0.935(3) 0.190(k4) L.5(9)
H(2) 0.403 (2) 0.763(3) 0.131 (k&) 5.1(9)
H(3) 0.479(2) 0.611(3) 0.190(5) 6.4(10)
H(%) 0.594(2) 0.635(3) 0.307 (&) L.o(8)
H(5)® 0.681(2) 0.756(3) 0.396 (%) 4.1(9)
H(7) 0.605(2) 1.008(2) 0. 481 (4) 4.0(8)
H(8) 0.668(2) 1.156(3) 0.589(5) 6.5(10)
H(9) 0.800(2) 1.135(3) 0.622(5) 6.3(10)
H(10) 0.850(2) 0.967(3) 0.541 (&) 3.7(8)

®The number of the hydrogen atom is that of the carbon to which
it is attached.

bH(S) is the amine hydrogen attached to N(2).



Figure 13. Observed and calculated structure factors (x 10) for
2,2'bipyridylamine
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Table XIX. Interatomic distances and angles in 2,2'bipyridylamine

c(1)-c(2)
c(2)-c(3)
C(3)-c(k)
c(&)-c(5)
c(6)-c(7)
c(7)-c(8)
c(8)-c(9)

N(1)-c(1)-c(2)
c(1)-c(2)-c@3)
c(2)-c(3)-c(k)
C(3)-c(&)-c(5)
C(&)-c(5)-N(1)
C(5)-N(1)-C(1)
N(1)-C(5)-N(2)
N(2)-c(5)-c(4)
C(5)-N(2)-c(®)

A.

1.362(5)
1.37%(5)
1.367(5)
1.391(4)
1.395(5)
1.367(5)
1.375(5)

Distances (1)

c(9)-c(10)
c(1)-N(1)
C(5)=N(1)
C(5)=N(2)
C(6)=N(2)
C(6)-N(3)
C(10)-N(3)

B. Angles (°) e.s.d. = 0.4°

125.1
117.6
119.2
119.4
122.3
116.4
119.4
118.3
131.1

N(3)=c(10)-C(9)
c(10)-c(9)-c(8)
c(9)-c(8)-c(7)
C(8)~c(7)-c(6)
C(7)-c(6)-N(3)
C(6)-N(3)-c(10)
N(3)-C(6)-N(2)
N(2)-c(6)-c(7)

1.374(5)
1.345 (&)
1.332(4)
1.379(4)
1.380 (%)
1.338(4)
1.337(k)

124.0
117.6
120.3
118.4
122.3
117-5
113.5
124.2
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Table XX. Interatomic distances and angles involving hydrogen atoms

A. Distances (i) e.s.d. = .03 }
C(1)-H(1) .96 c(10)-H(10) .92
C(2)-H(2) -99 . C(9)-H(9) .98
C(3)-H() .9k C(8)-H(8) 1.03
C&)-H(&) .95 C(7)-H(7) -9b
N(2)-H(5) .87 H() ... N(3)2 2.18

°

B. Angles e.s.d. = 2.0

H(1)-C(1)-N(1) 113 H(10)-C(10)-N(3) 116
H(1)-c(1)-Cc(2) 122 H(10)-C(10)-C(9) 120
H(2)-C(2)-c(1) 120 H(9)-€(9)-¢(8) 121
H(2)-C(2)-Cc(3) 123 H(9)-C(9)-C(10) 121
H(3)-C(3)-C(2) 19 H(8)-C(8)-C(7) 116
H(3)-C(3)-C() 121 H(8)-C(8)-C(9) 124
H(&)-c(&)-c(5) 121 H(7)-C(7)-C(6) 120
H#)-C(&)-C(3) 119 H(7)-C(7)-c(8) 122
H(5)-N(2)-C(5) Ny H(5)-N(2)-C(6) 14

aHydrogen bond. N(3)' is related to N(3) by the symmetry operation
3/2 = x, 3/2 -y, z.



Figure 14. A dimeric unit of 2,2'bipyridylamine displaying the two-fold symmetry
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are listed in Table XXI, with least squares plane information provided

in Table XXTI.

Description of the Structure and Discussion

The low melting polymorph of 2,2'bipyridylamine contains pairs of
molecules hydrogen bonded to one another, the dimeric unit possessing
two-fold crystallographic symmetry. Within the molecule the carbon-
carbon bonds adjacent to the bridgehead nitrogen are found to be
significantly different in length (1.395(5) R) from the remaining
carbon-carbon distances (1.369(5) A). The latter are somewhat shorter
than pyridine C-C distances previously reported.35 The carbon-ni trogen
distances in the pyridine rings average 1.338(4) % with no significant
deviations and are virtually identical to the 1.340 & C-N distance
reported for pyridine.?'S The two bridging C-N bond distances are
identical at 1.380 i. The bond angles within the pyridine rings vary
between 117.6° (C(1)-C(2)-€c(3), C(8)-c(9)-¢€(10)) and 125.1°
(N(1)-Cc(1)-cC(2)). The bond angles about chemically equivalent atoms
in the two pyridine rings are equal within standard deviations. Bond
angles involving the bridging nitrogen are reasonable in the light of
repulsive and attractive forces present. The C(6) - N(2) - C(5) angle
of 131.1° reflects the nonbonded repulsions between H(7) and N(1) at
2.38 i. The hydrogen bonding between the moieties probably accounts
for the 113.5° angle found for the N(3) - C(6) - N(2).
The carbon-hydrogen I-:ond distances range from .92 & (C(i0) - H(10))

to 1.03 & (C(8) - H(8)), the average being .96 A. The N-H distance is
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Table XXI. Nonbonded interatomic distances (}) for 2,2'bipyridylaminea

N(T) ... H(7) 2.38 c(1g) ... c(?'H 3.69
H(1) ... #(7E) 2.8 c@) ... ce'h 3.60
H2) ... n(8TIT) 2.52 NG) ... c(6'D) 3.81
HG) ... HEHD) 2.39 NE2) ... o)) 3.53
) ... H(8YY) 2.6k N(D) oo HOOTD) 283
@) ... c(5) 3.53 N@) ... cao'Thy  3.u8
c@) ... (1Y) 3.59
e ... n2Y) 3.53
c(10) ... c(6'%) 3.33

®Roman numerals denote the following symmetry transformations:
I=3/2-x, 3/2-y, 2; II=1=x,2-y, }=2; III=~-1/2+4x, -y,
1/2-2; IV=3/2-x%x, 5/2-y, 2; V=x, 3/2~-y, 1/2+2z; VI =3/2-x,
y, 1/2+2; VII=3/2-x, vy, 1/2+2.
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Table XXII. Least squares planesa for 2,2'bipyridylamine

A i n_ x
Plane 1 -.373 -. 041 .927 2.19
Plane 2 -. 129 -.354 .926 2.42

Deviations from Plane

Plane 1 Plane 2
Atom Deviation Atom Deviation
c(1) -. 003 c(6) ~-. 008
c(2) . 005 c(7) - 005
c(3) . 000 c(8) . 00k
ck) -.003 c(9) ~-. 011
c(5) . 00k c(10) . 008
N(1) -. 001 NG3) . 000
H(1) --05 H(7) . 014
H(2) -.03 H(8) -.013
H(3) -.05 H(9) . 007
H(&) -.02 H(10) . 034

aThe planes £2X' +mY' + nZ' +k = 0 are referred to orthogonal axes.
The transformation from fractional cell coordinates (x,y,z) is
X! = xa, Y' = ya, and Z' = z2c.
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.87 & with H-N-C bond angles of 114° (Table XX).

The rings in the molecule are approximately parallel to the ab
piane. As expected, the largest component of anisotropic thermal
motion of the heavier atoms is in a direction perpendicular to this
plane, with approximately equal root mean square deviations in this
direction for all the heavy atoms. The hydrogen isotropic thermal
parameters range from 3.7 ﬁz (H(10)} to 6.5 5? (H(8)).

The pyridine ring containing N(1) is strictly planar with a
maximum deviation of .004 } from the mean plane, while in the second
ring C(9) is displaced by .011 } from the mean plane, a deviation of
borderline significance.

Steric hindrance within the ligand is relieved by a twist of the
two rings giving rise to a 23° dihedral angle between them (Figure 15).

The hydrogen bond joining the two molecules is nearly linear with
a N(3') ... H(5) -N(2) angle of 172°. The distance between the hydrogen
and receptor atom is 2.18 3 while the N(3') ... N(2) distance is
3.02 §. In spite of the short distance between N(1) and H(7), 2.38 §,
it is unlikely that there is an appreciable linkage between these
atoms due to the unfavorable N(1) - H(7) - C(7) angle of 117°.

The crystallographic two-fold axes at x = 1/4, y =1/4, and
x = 3/4, y = 3/k are those running through the center of the dimeric
units and these units are layered approximately perpendicular to
the z directién (Figure 15). The distance between these layers is
nearly 3.7 &, a value typical of layered aromatic structures.

Distances between dimeric units in the same layer approximate those



Figure 15.

A stereographic view of the unit cell of 2,2'bipyridylamine.
the lower left corner with X up, y across, and y into the page

The origin is In






101

values expected for Van der W23l's contacts, the shertest being 2.39 &

between H(3) and H(7). AIll short intermolecular contacts are listed
in Table XXI.

It is interesting to speculate on the structural changes that
may occur in the transformation of the low melting form to the high
melting form of 2,2'bipyridylamine. If the ring containing N(1) is
rotated about the N(2) - C(5) bond to attempt to bring N(1) and H(10)
into proximity, the distance between H(4) and H(7) would be reduced to
approximately 1.6 i, making this an unacceptable configuration. |If
the dimeric units remain in the high melting form, only C-H ... N type
hydrogen bonds could be formed. It seems likely therefore that the
high melting form undergoes a significant change in structure relative
to the low melting form.

With the structural data presently available for transition
metal complexes with 2,2'bipyridylamine, it is not possible to make a
meaningful comparison between the coordinated and free ligand. It is
hoped that future structure determinations (X-ray and/or neutron) of
metal complexes with this ligand will provide structural parameters

with errors comparable to those in the present study.
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APPENDIX A: DIRECT PHASE DETERMINATION

BY USE OF LINEAR PROGRAMMING

Introduction
Use of linear equations to directly determine the phases of struc-

ture factors for centrosymmetric crystallographic problems was first

37

discussed by Hoppe36 and shortly after by Main and Woolfson. In

both cases relations were established in reciprocal space making use
of null points in the Patterson function. Both methods involve the
convolution38 of the electron density function with a function repre=- -
senting the null points in the Patterson; however, the manner in which
the null points are used is quite different as are the resulting
equations.39 Solution of these linear equations employed standard
least squares techniques. However, such techniques can, and often do
provide results that are physically unreasonable.

In the present work iinear equations are set up in real space, that
is, employing directly the Fourier expansion of the electron density
function, and use is made of null points in the Patterson or symmetry
map.ho_h& The linear equations are solved, however, by linear pro-
gramming algorithms which allow the solutions to be constrained to
physically reasonable values.

During the time this work was being performed two papers appeared
in which linear programming techniques were used in the solution
of the phase problem. The first paper, by Dakin,L}5 employs equations

L6

quite different from the present work, while the recent paper by Lesk

is similar but not identical to the present approach.
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An outline of the mathematical formulation will be presented as
well as some preliminary results obtained in a test of the method on a

known structure.

Theory
The following discussion will be for a one-dimensional case but
can be readily generalized to three dimensions.
The Fourier expansion of the electron density for a centrosymmetric

crystal structure is given by:

] [--]
p(x) = N (Fo + 2 f] [Fhlsh cos2n hx) (A1)

h
where p(x) is the electron density at point x, L is the length of the
unit cell (the volume would be used in three dimensions), Fo is the
number of electrons in the unit cell, !Fh‘ is the magnitude of the
structure factor and Sh is the sign of the structure factor. The mag-
ni tude of the structure factor is cbtainable from experiment, but the
signs are not. In practice the number of terms in the infinite Fourier
series is limited by the experimental availability of structure factors
and is further restricted by the number that can be conveniently

handled in the solution of the problem. To reduce the errors associated
with such truncation, use is made of an artificial temperature factor
which effects the magnitude of the structure factor but not its phase.
By choosing a temperature factor that decreases the resolution of the
electron density function to a given value, e.g., 2.0 4, it is only

necessary to use data that significantly contributes to the 2.0 §
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structure within the desired error limitations. From the null points
in the Patterson or symmetry map, it is possible to derive positions in
space where the electron density is effectively zero, i.e., p(x) = 0.
The number of such points is usually quite large and each point re-
sults in an equation. These equations are in a form that can be readily
solved by linear programming techniques.

The algorithms and principles of linear programming are discussed

in many textbooksu7

and package programs are available for solving
problems of this type;48 therefore only a brief statement of the

linear programming technique will be given here. To use the linear
programming method, one must have a mathematically expressible objective
function, a set of linear constraints, and a lower bound of zero on the
solutions (the non-negativity constraint). In general the problem has
more variables than equations, as explained below, and the variables are
adjusted in an iterative fashion to satisfy the linear constraints

while simultaneously maximizing or minimizing the objective function.

In Tinear programming the equations approximating equalities for the
null points in space are allowed to vary from an exact equality in order
to maintain the desired constraints. To accomplish this extra variables,
known as slack variables, are added to each equation. The solution to
this problem must lie within the specified bounds for physical reality
while simultaneously reducing the residuals in the linear constraints

to a minimum. The choice of objective function assures the minimiza-

tions of the residuals.
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As an example, assume n null points in electron density space,
j structure factors suitably chosen and modified to reduce truncation
error, and k structure factors whose phases have previously been deter-
mined. in general, three structure factors may be assigned signs to fix
the origin, or some structure factors might have been determined in a
previous run at lower resolution. [f some information regarding an
atom position is available (e.g., a heavy atom position determined from
the Patterson, but of insufficient size to phase the structure), this
information may also be included. Substitution of (xh-l) for Sh is
made in (1), to satisfy the non-negativity constraint, and the equation
is transformed to place all known quantities on the right-hand side,

yielding

ZE Xh[Fh|c052n hx = (ZE thlCOSZﬂ‘hX - E ch052x kx-Fo). (A2)
Three types of linear constraints are now available: n null point
equations similar to (2), j constraints bounding the solutions, and
g for an atom position that is known.

possibiy a contraint account

The problem to be solved by the algorithm appears as follows:
ZE Xh]Fhlcoszx hx+e.-e} = ZE ]Fh!COst hx -

25 F cos2n kx - Fo > (A3)
k

X 2.0, (AL)
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2y |Fh|xhc052:r hx + em-er'n =C+R (AS5)
h

where R is the right-hand side of equation (3) and € is the numerical
value expected for the electron density of the known atom at the par-
ticular degree of resolution, a quantity determined by trial. The
epsilons are the slack variables mentioned earlier, each equation con-
taining two such variables to account for the non-negativity constraint.
It is the sum of these slack variables that are minimized in the ob-
jective function.

The problem in this form is readily solved by the IBM Mathematical
Programmi ng System.hs The solutions consist of values of Xh between
zero and two (signs between +1 and -1) and values of the slack variables
indicating the errors in the equality approximations for each null
point. Only values of Xh corresponding to the integer positive or

negative sign are used for definite phase assignment.

Experimental
Although the results reported below do not show conclusive
evidence for the effectiveness of the method, it does show the potential
of the technique. The structure used for a test case was (CuLzl)leloh
where L = 2,2'bipyridylamine, space group P2]/c with 248 atoms in the
unit cell. With 59 reflections, 72 null points, one peak position,
and a temperature factor resolution of 2.0 i, the linear programming

method yielded integer values of Xh (zero or two) for 34 reflections,

of which 32 were correct. From these results it was possible by a
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phase refinement procedure, to obtain the correct signs of all the

input reflections and subsequently solve the structure. The time of
solution for this test case, containing 136 rows, 339 variables, and
converging after 442 iterations, was 2.21 minutes c.p.u. time, using

96 K bytes of storage on the IBM 360/65 computer.

Discussion

While the results obtained are not conclusive, the general approach
of the problem seems promising. The primary advantage of the method
outlined is that the structure can be solved in various degrees of re-
solution, keeping the amount of data to a manageable quantity. This
is particularly important for large biological structures. In addition,
the method allows structural information available from any other
approach to be built into the phase determining process, i.e., the
posi tion of the heavy atom in the typical protein.

Future work should include extensive testing of the method with
particular emphasis on formulation of a more powerful objective
function, as the constraints placed on the variables seem quite ade-
quate with most of the solutions clustering at the integer values of
zero and two. An objective function similar to the equation derived by
Main and WOolfson37 has been examined, in which the electron density is
convoluted with a symmetry map function, the result being an objective
function that is minimized containing the known coefficients of the
Fourier expansion of the symmetry map function and the magnitudes of

the structure factors. The results obtained using this objective
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function were, however, less satisfactory than those obtained using the
minimization of the residuals. Unfortunately, the type of objective
function having potentially the greatest power, such as the maximization

bLs

of the cube of the electron density function, ~ an expansion similar to
the =2 relation,L"9 results in nonlinear functions. With the current
developments in the area of operations research, however, such a
function may be feasible in the near future.

As indicated by the speed of solution for the test case, it is
quite possible to increase the size of the problem, adding more null
point constraints and reducing truncation error by including more terms

in the series. Such an increase, in itself, however, has not made a

significant improvement in the tests run so far.
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APPENDIX B: RESEARCH PROPOSALS

The following research proposals regard extensions of work reported
in this thesis.

1. Although the coordination geometry of bis(2,2'bipyridylamine)
copper (IT) perchlorate has been well established, a careful redetermina-
tion of the structure, with errors comparable to those in the structure
of 2,2'bipyridylamine, would provide data for a comparison between the
ccordinated and free ligand. The structure determination of
bis(2,2'bipyridylaminato) copper(IT), ° in which the amine protons
have been removed leaving the ligand with a net negative charge,
would allow the comparison to be carried further. Structural dif-
ferences between the two similar metal complexes would also be of
i nterest.

2. The structure determination of the high melting polymorph of
2,2'bipyridylamine would provide information on the effect of structure
on the macroscopic properties of this compound.

3. Further work on the method of phase determination mentioned in

Appendix A is warranted with particular emphasis on the formulation of

a more effective objective function.
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